С.B民Q.A.
 RUTO B RIG 邑
 Details of Dike

section between A and B. DIKE proper

SELTION between B and E. SLREEN
 AO FeaT

$$
\Delta
$$

as ha ch

THE RULO BRIDGE.

A REPORT

To CHARLES E. PERKINS, President of the Chicago, Burlington \& Quincy Railroad, By

GEORGE S. MORISON, Chief Engineer of the Rulo Bridge.

SUbjects.	APPENDICES			PLATES.	
	pagr.		рабе.	1. General Map.	13. General Eleystion and Plan of Through Span.
1. Preliminary Narative	- 3	A. List of Engineers, Employees and Contractors	13	2. Ceneral Elevation, Plan, Profie and Alignment.	14. Through Span; Pancl Point o.
II. General Description	+	B. Charter	14	3. Profire showing Stratification on Bridge Line.	15. Through Span; Panei Points I and 2 .
1II. Substructure	4	C. Specifications for Masonry	15	+. Pier I .	16. Through Spans Panel Points 3,4 and 5
Iv. Superstructure	9	D. Record of Siakking	16	5. Pier II,	17. Through Spau; Panel Points 6 and 7 -
v. Approaches	10	E. Time, Cost, etc., of Foundations	${ }^{2}$	6. Pier III.	18. Through Span, End Elevation.
vi. Protection Work	11	F. Specifications for Superstructure	- ${ }^{28}$	7. Pier IV.	19. Deck Span; Eleration and Plan.
VII. Cost	s2	G. Tests of fillssized Steel Eye bars	30	8. Caissons II, and III.	20. Deck Span; Details.
				9. Diagram showing Rate of Progress in Sinking Caissons.	27. Supporing Tovers.
				10. Clay Hoist.	32. Strain Shects.
				13. Record of Water Stage.	${ }^{2} 3$. Details of Dike.
				12. Approach Pier.	

1890.

President Chicago, Burlington \& Quincy Ruilroad
Dear Sir:-
I submit the following final report in relation to the construction of the bridge across the Missouri river at Rulo, Nebraska.

Yours truly,

THE RULO BRIDGE.

PRELIMINARY NARRATIVE.

Before the complecion of the Platismouth Sridge in 188 , the importance of a lower crossing of the Missouri to accommodate the Southern lines of your Nebraska system of railroad, bccamc apparent, and I was instructed by you to make an examination with a view to locating such a bridge ncar the moith of the Little Nemala.a. This examination was made in the scason of 2880.81 and resulted in the selection of a location near the jittle vilage of Aspinwall about two miles below the mouth of the Little Nemaha. A bridge built here would have made a direct connection between the railroad leading westerly from Nemalha City to Beatrice and the branch on the cast side of the river from Corning to Villisca.

Subsequently the acquisition of the Hannibal \& St. Joseph R. R. by your company made a more southerly crossing desirable and the fact that the Atchison \& Nebraska R. R. (a portion of your Nebraska System) followed down the valley of the Great Nemala indicared that a location at Rulo near the mouth of the Great Nemaha would have decided commecrial advantages over the Aspinwall location.

The season of $1883^{-8} 84$ was therefore devoted to examinations and surveys in the neighborhood of the mouth of the Great Nemala.

The beginning of the work may be fixed as September $13^{\text {the }}, 888$, when Mr. B. L. Crosby the Resident Ensincer arrived at Rulio. The location at Rulo was fixed by me and borings were actually begun one week after Mr Crosby's antival.

These borings showed a state of affars quite unlike that usually found in
the Missouri River, there being no rock within any reasonable depth, but a stiff bed of blue clay. of an average thickness of about 15 feet was found under the alluwial sand, this clay resting on a bed of caarse sand and gravel of vary. ing thickness, which itself rested on a bed of clay, the sufface of which was ing thickness, which isseff rested on and which from its stratifed characaer was found to be more truly nearly level and which from its stratifec character was found to be more truy would be of a satisfactory character, the cost of the foundataions would be wexceptionally large. It was evidently expedient to examine other points in the same neightiborliood

Borings were accordingly made in the spring and summer of 1884 at White Cloud to miles below Rulo and at Arago io miles above Rulo, these being the nearcst points at which the ceneral topography of the country indicated that the construccion of a bridsco would be feesible. The borings at White Cloud gave better results than at Ruld, as rock bottom was reached, but at Arago, on the east side of the river, hard material was found only at a depth of 123 feet from top of sand bar, this material being a very soft sand stone. The dififulties in approaching a bridge at either of these points werc so great that Rulo was selected as decidedly the best location.

The width of the river at ordinary' high water stage at Rulo was abont 1500 feet, the channel being next to the west shore. This width being greater than the width required to pass the river, it was deternined to reduce this width to about 1100 feet by the construction of a dike above the bridge. Construction of this dike was authorized in October 1884 . work was begrun on the track leading to this dike October 22d; the dike itself was begun on the 4th of December and completed May 7 th, 1885 , and an extension in the form of a permeable screen made in the following May and June.
uthority for the construction of the oriage was obtainca from the general government in 1884 by an Act which became a law June 18th, 188+. This Act is p pinted in full in Appendix B.

The location of the bridge had becn dethitely fixed at the time that Rulo was selected in prelerence to any othor place. The character of the bridge was, however, not fixed at this time. It was evident to me from the beginning that the only proper structure was a high bridge without a cravi, the wescrin approach to which would run nearly due west comnecting with the Atchison \& Nebraska Railroad in the Nemala valicy. in this opinion 1 had the hearty support of Mr. R. J. McClure, Cluef Engineer of the Chicago, Buringion \& Quincy R. R. and Mr. J. F. Barnard, then General Manager of the Hannibal \& St. Josepll R. R. who really had been the first to call attention to the menits of Rulo as a place for crossing the Missouri River

There was, on the other hand, a deciced demand by some of the operating There was, on the other hanc, a decicicc demand by some of the operating
offcials of the conpany for a low bridge, the west approach to connect with the old track of the Atchison \& Nebraska R. R. in front of the town of Rulo, which ran south along the Missouri bottom till it reached the Nemalaa valley. The merits of a high bridye scheme was its simplicity, a less cost of maintenance of the bridge and the fact that it slortened the through distance two niles. The only adrantage of the low bridge scheme was that it avoided the deep cut west of Rulo, and a careful estimate showed that a low bridge would be the more expensive of the two. The difference in opinion prevented an early deternination of the plan of bridge and did much to render the cost of real estate on the west side of the fiver unreasonably large.
In 1885 and before the character of bridgge lad been deternined, 1 asked for aulhority to put in the foundation of Pier I (the eastern pier) with a view of dectermining more fully the character of the material on which the piers would rest. This authority was granted and work was accually begun Deeember 3,18 , 885 , this foundation being finished in the following April.

The character of the bridge was finally determined and the plans were submitued to the Secretary of War for approval July 19, 1886. No effort was made to get this approval gnickly, and it was not finaly received until Felruary 25, 188\%, work. however, had meanwhile been in progress.

In May 1886 authority was given to continue the construction of the bridge in earnest and the work was prosecuted from this time forward without delay under the direct charge of Mr. B. L. Crosby as Resident Engincer.

The winter of $1886-87$ was unfavorable for work, it being one in which the ice formed and broke up several times, this causing some delay and increasing. the cost of the work.

The last span of the bridge was swung September 24, r887, and on the afternoon of October 2 d the first locomotive crossed the bridge, and it was opened to traffic immediately thereatter.

The grear cut on the west approach to the bridge was, however, not yet compieted, and for nearly'two years the traffic crossing the bridge was taken over the old line between Rulo and Rulo

On June 3, 1888 the excavation lor the great cut was completed, though the track remained to be laid and much ditching to be done; on July rath the first train passed throught the great cut. The balasting of the track through the great cut was completed September sth
On November 1, r88\%, the bridge with its approaches was turned over to the operating department as a completed structure

II

GENERAL DESCRIPTION
The Rulo bridge is a single track railroad bridge. It consists of three channel spans each 375 feet long between centers of end pins, restiny on four piers of granite masonry (numbered from east to west), at each end of which are three 125 fect deck spans, the spans being separated by fron towers 25 feet long, making the length of the iron structure at each end of the channel spans 425 feet. The end pins are placed \& ft. 6 in. butween centers over l'jers 11 and 111, and 3 ft. 6 in. between centers over Piers 1 and IV, and the end pin of the deck span is 1 ft . $1 / 2 / \mathrm{in}$. from the back of the bolster, thus making the entire length of the whole structure from end to end of iron or steel work. 1993 feet I inch.

The bridge is built on a grade of 0.4 per cent. (21.12 ft . per mile) ascending westward. The clearance at the center of the east span was 53 feet above the water of April 14.1884 , and that at the center of the west span 36 feet above the same high water, this stage of hiigh water being about six feet below the highest water observed except that of 188 r ; these clearances were both ac. cepted in the approval of the plans by the Sccretary of War. The actual clearances above the extraordinary flood of 1881 , so far as this can be deter mined, are 43.5 and 46.5 feet respectively. Since the construction of this bridge, a Standard High Water has been estallished by the Missouri River Commission at this place (circular of April 24, 1889): the clearances above this high water are 50.8 and 47.8 feet respectively

The east approach is 15.220 feet long from a connection with the track built by the St. Joseph \& A ebraska R. R., in Section 36, T. 61 N. . R . 0 IV, to the end of the iron work, the maximum grade on this approach bring 0.5 per cent. (26.+ft. per mile.)

The west approach is 19,260 leet long froin the west end of the iron work to the connection with the Archison \& Nebrasha R. R., the maximum grades being $0 .+$ per cent. (21.12 ft . per mile) in each direction, excepting a short piece of one per cent. put in temporarily at the connection.

Besides the two approaches proper, a third approach, caliced the Atchison connection, was built connectiny the west approach with the old line of the

Atchison \& Nebraska R. R., this comection being 1.36 mikes long, wilh maxi: munn grades of 1.5 per cent. (79.2 ft . per mile)
Pier IV the west pier stands on the edge of the river bank which is 530 feet distant from the base of the bluff, the intermediate ground being a piece of bottom land of about the elevation of high water, but which is conposed so fargely of the tough soil known as gumbo, that the action of the river upon it s very slow. The only protection required was a quantity of riprap revet ment at Pier IV and extending a moderato distance above and below; this iprap must be carefully watched and may rerquire extension sooner or later.

The only protection on the east side is the dike, which was the ìrst work done in the construction of the bridge, and which has acted admirably

All the levels taken during the construction ol the brillge were tied to th benches established by the Missouri River Commission and referred to a tive water datum, thiis datum being 412.71 fect below the St. Louis City Directrix.

III.

SUBSTRUCTURE

The substructure comprises the four sranite picrs which support the channel span and sixteen small cylindrical piers which support the tower which carry the deck spans. The principal jiers are numbered from 1 to 1 l Per 1 beginning at the east end. These four piers are built on pncumatic caissons of the following dimensions

```
Pier I, 53 feet long, 25 feet wide and 18 feell bigh.
pier II. is "" 27 " " " 18 " "
Pler III, 55 ", "
```

All caissons were built with a side batter of one in twenty-four.
The foundations were put in by the company's own men under the diree cion of the Resident Engineer. The masonry was built by contract by the frm of Drake \& Stratton.

The caisson for Pler 1 was built in a pit excavated on the dry sand bar on the east side of the river. The caissons for Piers 11 and 111 were built in position on pile false work and lowered with screws to the bottom of the river. the caisson for fier was built in a pit excavated in the shore close to the

The pncumatic machinery was purchased Irom the Missouri V'alley \& Blair Railway and Bridge Co., and was the same machinery that had been used in sinking the foumclations of the bridge at Blair crossing. The machinery was first set up on the east side of the river near the site of lier 1 Subsecucutly all of the machinery was transferrod to the steamer John Bertram, which was purchasel from the Sioux City \& Pacific R. R., having been built to be used as a car transfer boar at Blair Crossines. This stcamer arrived at Rulo May 28, 1886, and when equipoed with the full outfit of pneumatic mas chinery, formed an admirable tool

The caisson for Pier l was built of pine with an iron cutcing edse and planked with wo thickesses of pine plank: The anher caissons were buit in the same way, except that the iron cutting edges were made heavier and the large sill timbers were of oak

The caisson for Pier 1 is surnounted by 33 fect of crib work built in three sections and stepped down to 46 feet by 18 feet at the top of the upper section. The caissons for Piers II and 111 are surmounted by 42 feet of crib work built with the same bater as the caisom, but the horizontal section that of an irregular octagon, the crib being sheathed with oak plank and the corners plated with $3-8$ inch iron.
The caisson for Pier IV is surmounted by 50 feet of crib work 48 feet by 20 feet. the sides being plumb

Both caissons and crib work were filled with Portland cement concrete.
The excavation of the pit for Pier 1 was begun December 3rd, 1885 , the raming of the calsson December futif and the setting up of the cutting edge January 15, 1886

The calsson was finished February ${ }^{13}$ th and the concrete filling was beguil February 18th. Air pressure was put on February 20th and on March Ioth the ailson reached the clay at elevation 792.1. After sinking about four feet into he clay a test pit was begun Narch 3 oth and sumk 19.3 ft. through the first clay into the gravel which separated the upper clay from the lower clay anch which at the site of this pier was only 3.4 feet thick. No increave of air pressure was required during the sinking of this test pit until the gravel was reachecd, and then it became necessary to increase the pressure at once to the full mount corresponding to the actual denth. This test pit showed the upper flay to be a perfectly honogeneous layer on which it was considered safe to found Piers I and IV. while it was thought best to sink Piers I1 and III to the lower way. The test pit having served its purpose the excavation was filled up and he sinking of the caisson was contimued till Ayril sth when an elevation of 85.88 was reached The sealing of the working chamber was begur on the
tollowing day and completed on the gth of April, thus finishing the first foundation.
No firther work was done on the foundation till aiter the high water season, when the first foundation taken in hand was Pier IS

The excavation of the pit for Pier IV was begun July 15 th, 1886 erection of the cutting edge on July 23 rd and the caisson was completed and lowered on the ground August 17 th. Concreting was begun August 19 th and air put on this caisson August 22 nd. The caisson reached the upper clay at elevation 799. S September gth. The clay, though identical in character with that found at Pier 1 , showed signs of having been disturbed. A test pit was sunk in this clay and while it was being sunk a horizontal crack was observed on which the upper portion moved over the lower portion about $1^{1 / 2}$ inches in a south easterly; direction. It becane perfectly evilent that it was necessary to sink to lower clay, which was an expensive process. On the 19th of October a leak was discovered in the well leading to the air lock, and further trouble was experienced in the same way three days later, this defect being clearly due to bad workmanship. The caisson finally reached the lower clay on the 2gth of October and on the 5 th of November sinking was stopped at elevation 765.09 and scaling begun. The sealing was completed on the sth of November and air let off on the following day

No masonry was laid on either Pier 1 or IV until the completion of the foundation.

The first work done on Pier 111 was to drive a pile break water above the pier, which was begun September 1 thth. 1886 , and this was immediately followed by the construction of the falsework. The erection of the caisson was begur October gth and finished November gth. Shallow water was obtained by sinking brush below the pile protection and thus forming a sand bar at the pies
site. Meanwhite. a winter bridge had been built by the Operating Depar ment about one quarter of a nile below the bridge line, and this bridge caused an ice pack which extended above the bridge line and caused very scrious trouble. On the 24 th of November the caisson was lowered until it floated on the water. Concreting was becgun on the following day, but the trouble with ice prevented rapid progress. On the 28 th of November all access to the pier was cut off by ice and a gang of thirty men were imprisoncd there till the following morning. These difficulties were over on December 1st and the construction of the crib was begun, on the the of 1)ecember air pressure was put on. The crib was finished January 9,1887 , its concrete filling January it ith, and matonty was begun January i4th. On the fth of January the caisson had reached the first clay; on February roth it had passed through the first clay and reached the gravel. The second clay was renched at eleration 760.9 on March I2th. From the 1,t of March to March toth it became necessary to abandon the foundation while the ice went out. On March 18 th the foundation was agzain abandoned just as it was ready for sealing, and during the high water of the next two wecks, the pier was enirely submerged. On the 12 th of April air pressure was again put on and it was found that the caisson had settled i. 4 ft . into the clay. In order to fit the coursos of masonry it became necessary to sink 1.07 It. further to elevation 763.53. . On the 19 th of April the sealing of the working chamber began and the foundation was finished on the sealing
the 26 ch.

The first work done on Pier II was on the 5th of January 1887, when the driving of piles for the staging was begun. The erection of the cutting edge was begun on the It thand the caisson was finished on February 5 th; it was lowered on the 1oth of February. landed on the 12 th and air pressure put on on the ${ }^{1} 5$ th, the machinery on the Bertram supplying air for both Piers 11 and 111 and
the sinking being continued in this way till the 2 3rd of February. Air pres sure was again put on on the 18th of March; the crib and concrete filling were finished on the Sth of April, and the upper clay was reached on the 1oth of April. The pier was abandoned April isth so as to leave the steamer free to work on Pier 11I. work was resumed April 26th, and was then continued without intereuption: the second clay was reached June the the sealis of the working chamber begran ond this the last foundaion the Rulo Bridge, was completed June 18 th

The sinking through chay was greatly facilitated by the use of a special at lock with an elevator arrangement attached by which the air pressure in the caisson was made to lift a bucket of clay to a loch above the masonry, which lock was worked entirely from the outside and when opened the bucket was dumped by the outside attendant. This special lock, known among the ensinecrs as a " clay hoist " and amons the workmen as a "go-devil" is shown in detail on Plate io: the movement is preciscly the same as that commonly used in hy draulic elevators, except that instead of water pressure, the air from the caisson was made available for powe

The fill details of the four piers are given on Plates 4, 5. 6 and 7 , and of the caissons on Plate 8. The ratc of progress is shown graphically on Plate of Full records of the progress and details of sinking these foundations were kep and are given in Appendix D. The detail cost is given in Appendix E.

The cost of the four foundations is shown in detail in the table below.

This cost includes all concrete and other material below the masoury. In this statement the item of freight charges is simply what is known as "company's freight" being freight on the lines of the C. B. \& $\mathrm{O} . \mathrm{R} . \mathrm{R}$. system.

It will be observed that the cost of the foundation of Pier III was $\$ 6,574$ more than that of Pier II although the quantities of material are almost identical in the two piers, the extra cost being due to the interruption and other difficulties from ice and the incidental troubles connected therewith

The contract for the masonry was let on July 2 rd 1886 thit
The contract for the masonry was let on July 23rd, 1886 to Geo. S. Field \& Co. and transferred by them on the 2nd of August with my consent to the frm of Drake \& Stratton. The dimension work is of granite quarried nea

The specifications for the masonry are given in Appendix C.
The first stome laid was on Pier IV, the masonry of this pier being begun November 27 th, I 886 and finished March 25 th, 1887 . The masonry of Pier III was begun January 14 th, 1887 and completed May 19 th, 1887 . The 111 was begun January 14 th, 1887 and completed May 19th, 1887 . The 188%. The masonry for Pier I was begun April 194h, 1887. and completed August gth, 1887 .

The cost of masonry is shown in detail in the following table

The total cost of the four piers including the foundations and masonry is given in the following table:

The towers which carry the approach spans are supported on brick pier he plans of which are given on Plate Iz. An excavation was made at the site of each pier in which mine piles were drivent; a further excavation was then made around the piles and filled with concrete. In this concrete was buried an annular washer from which six anchor rods extended upwards. 'The pier was then built up with hard brick laid in Portland cement mortăr around the rods and surmounted with a wrought iron cap plate. Another annular washer was then placed on this cap plate and the rods serewed up till an initial strain of five tons was obtained in each rod; the cap plate, which was formed of a plate and a circular channel iron was then filled with Portland cement concrete: a second cap plate was then put on top and the whole riveted up. The design was based on the principle that the tension in the rods would always keep the brick work under strain and so prevent its jarring loose. These piers werc built by the day by the company's own men, the total cost of the 16 piers being $\$ 23.264 .66$ of which $\$ 1,+79.55$ was for freight,

The amount of masonry and concrete in the entire bridge is as follows:

			concreme	rorat.
Pier 1	${ }_{561.8}$	-	2.1098	2.671,6
Prer It	1,285.9	-	$1,1986.1$	
${ }_{\text {Precter }} 11 \mathrm{I}$	- 1.317 .0	-	1,944.0	3, 3.660
${ }_{10}^{\text {Pier IV IV }}$ Small pieris	${ }^{144} 4$	263.8	${ }^{2}$	
Total	3.978 .1	263,8	8.5786	12,581.5

The total cost of the substructure was then as follows:
Four Main Piers
Sixteen Small Pic

$\begin{array}{r}\$ 343,017.37 \\ 23,264.66 \\ \hline\end{array}$

The east end of the east deck span rests on a timber pier around which the embankment has now been filled; the west end of the west approach span rests upon a contrete block resting on the embankment and allowed to settle with the embankment, the end of the span being raised as settlement occurs Both the timber pier and the concrete block have been treated in the accounts as parts of the approaches, though this distribution is not strictly correct.

IV.

SUPERSTRUCTURE.

The superstructure consists of three through spans and six deck spans. wree at each end

Each through span is 375 feet long between centers of end pins, fifty feet deep and twenty-zwo feet between centers of trusses. Expansion is provided at the west end of every span, that is at the upper end, the bridge being on a grade

Each deck span is 125 feet long between centers of end pins, 17 feet 6 inches deep, the trisses placed i2 feet between centers. The spans are separated by iron towers 25 feet long, thus making each set of deck* spans with intermediate towers a continuous structure 425 feet long, divided into 17 equal panels of 25 feet each. The trusses are fastened rigidly to the posts which form the towers; expansion is provided at each end of the 425 lett, the expansion of the central span being taken out by the spring of the towers.

Proposals were invited from a number of prominent bridye builders and
the ad of August 1886 the contract for the superstructure wiss closed with the Edgemoor Iron Co., by whom the entire work was manulictured. With my approval the Edyemoor 1ron Co. sub-let the erection to ure firm of Baird Bros., and it was done under the immediate direction of Mr. Andrew 13, iird

The through spans are of the double system Whipple type, the trusses being divided into 15 pruels of 25 feet each. The top chord, end ports, eye bars, floor beams. rools, bolsters, rollers, rail-hearing plates and pins, are of sares, floor benms, All other parts, are of wrourght iron except the henvy wall phates rest
sted. ing on the masonry, washers and ornamental work, which are of cast iron. The details of these spans are given on Plates I4, 15, 16. 17 and 18 .

The deck spans are of the single system Whipple type. The pins, rollers, rail-bearing plates and eye bars are of stecl. The other portions are of wrought iron except the heavy wall pedestals, which are of cast iron. The details of these spans are given in Plates 19 and

The trusses of the long spans were proportioned to carry a uniform moving load of soono lbs. pee lincal foot of bridqe, the effect of a moving load in ercess of that due to a uniform load of equal intensity being costimated on the basis of 5000 lbs . per foot

The floor system is proportioned for a total load of 6000 lbs. per lineal
foot of track: The top lateral system is proportioned to resist a wind pressure of 300 lbs . per lineal foot and the botom lateral system a wind pressure of 500 lbs . per lineal foot. The computed strains are given on Plate 22 .
The deck spans are propartioned for a total load of 5000 lbs . per foot, all reated as moving load.
The steel compression members in tup chords andend posts are made as nearly as possible of sy mmetrical section, the metal in the top cover plate being practically the same as in the two balance plates and the lacing below. The compression strains on these members was limited to $15,00 \mathrm{lbs}$. per square inch of net section, the net section being obtainat by detucting from the gros section the amount by which the cover plate exceeds the balance plates. The tensile strain in the bottom chord was limited to 14,400 lbss. per square inch and somewhat less in the web members.
in the approach spans the tensile strain on steel was limited to 13,000 BSs. per square inch, the largest strain being in the center panel of the bottom

The weights ofiron and steel in the through spanss are as follows:

The specifications under which the superstructure was manufactured are given in Appendix F.

The steel was all open hearth steel, the total nurnber of melts used being 6r, made by the following parties:

$$
\begin{array}{llll}
\text { Cambria Iron and Steel Co. } & 82 & \text { melts. } \\
\text { Catnogeie Phipp \& Co., Limited } 52 & " \\
\text { Pernnyyvania Stecl Co. } & 5 & " \\
\text { Pitsburgh Steel Casting Co. } & 22 & "
\end{array}
$$

The work was unanufactured by the Edgemoor Iron Co. at its works near Wilmington, Dela.

The first set of eye bars tested did not meet the requirements of the specifications, a considerable number of them breaking in the head; it seemed probable, however, that the breakage was not due to any defect in the bars, but to the fact that the machine was not strong enough to break them and that its own failings caused irregular strains. I therefore thought best to open the question anew and make the rejection of the bars depend on second set of tests to be made in the large testing machine at Athens, Penna.; the results of these tests are given in Appendix G and on these tests the eye bars were accepted
The trusses were erected on pile false work, a large traveler taking the place of upper false work. Thedates at which the several parts were erected is shown in the following table:
East Approacll Spans
Span I.II
Span II-III
Span III-IV
West Approach Spans
\qquad

All. 14,1887	
Nay	21,1887

$\begin{array}{ll}\text { May } & 21,1887 . \\ \text { April } \\ 13,1887 .\end{array}$

The last span would have been swung three days earlier but was delayed waiting for material.

The timber floor was placed on the superstructure by the company's own men, working under the direction of the Resident Engineer. The painting was also done by the company's own men working under the direction of the Resident Engineer.

The total cost of the superstructure is given in the following table:

throver spans		$\underset{\substack{\text { \$107, } 82929 \\ 2.773 .00}}{ }$	\$137.617.00
Labor-Erection aternl: Cenment, Iran Bomings, Sal[Anmonsa, Sulphur Deck spans,	-		
		57.75	
			+1.915.41
	-		
	-		
PLeok.			
	=		
			11,4988
	-		
	-	-	\$1969,40,.06

with a stcam shovel from a pit in the
earth in this Approach is as follows:-

```
Borrowed from sides ... 229,853 cubic yards.
Borrowed from steam shovel pit 150,7%
    Total ... . . %00,598 cubic yards.
```

The west approach is 3.64 miles long from west end of the iron work to the connection with the Atchison $\&$ Nebraska track in the Nemaha bottom. There are on this Approach three cast iron pipe culverts and four small tresles having an aggregate length of 495 fcet . Alf the remainder is earth work the total quantity being as follows:-

		side	326,970	ubic yards.
${ }^{\prime}$	"	used in emb rakment	240,173	" "
"	"	wasted	32,358	" "
${ }^{*}$	"	borraved	44.340	" "
Rock	"		2,700	" "
	Total			

These quantities include an extra width of grading for a distance of 200 feet at the Rulo station grounds.
he Atchison connection is 1.36 miles long leading southward from the west approach, with which it connects 7 foo feet from the west end of the iron work. There is a trestle 680 fect long in the town of Rulo, and a pile trestle 48 feet long near the connection with the old track, the remainder of the line being earthwork, The amount of material liandled on this line was $42,718 \mathrm{cu}-$ bic yards.

The alignment and gradients on the Approaches are shown on Plate 2. The contract for the earthwork of the Approaches was let May 19, 1886, to S. Dwight Eaton, of Burlingtom, lowa. This contract covered both the East and West Approaches and the Atchison comnection; it was not signed till June 26, 1886.

Grading was begun on the Atclison connection June 18, 1886, on the West Approach June 22d and on the East Approach July 13, 1886. The line from the east end of the great cut to the connection with the Atchison \& Nebraska track was not buitt fill after the bridge was opened, the line to the west being made by way of the Atchison Comnection, trains running backwards between Rulo Station and Rulo Y , although the bridge was opened for traffic on the 2d of October.
No earth was taken across the river from the great cut till November 23 , 1887. More than seven weeks of the best season of the year being lost 1887. More than seven weeks of the best season of the year being lost with rather more efficiency and the entire West Approach was completed and ready for the track on June 3 d, 8889 .
The great cut has a maximum depth of 82 feet. It is excavated through material of a mixed character, it being generally a sandy clay but containing some masses of hard blue clay and pockets of sand; these pockets of sand were generally flled with water, which water ran out when the excavation was made and did not reappear. The bottom of the cut is formed everywhere of hard clay, excepting near the summit at the west end. The cut was laid out with a 50 foot base with slopes of one horizontal to two vertical. In some instances these slopes were slightly increased, and some of the material was left in the base so that the finished width was generally not more than

40 feet. The cut was thoroughly ditched, left of sufficient width to be kept clean permanently, and the track was thoroughly ballasted. The claracter of the material, however, in this cut is such that it will require constant attention for a number of years in keeping the ditches clean, so as to avoid saturating the material in the sides of the cut by standing water: I regret to say that this has not been properly attended to since the work was completed
this has not been properly attended to since the work was completed.
A line nine tenths of a mile long was built connecting the East Approach with the dike above the bridg, line of access in acepairs sin three per cent. 158.4 ft . per mile.

VI

PROTECTION WORK.

The principal protection work is the dike on the east side. The posi tion and plans of this dike are shown on Plate 23 . The foundation of the dike was made of a woven willow mattress I25 feet wide, extending 100 feet
nside and 25 feet outside of the center line of the track laid on the dike On this as a foundation was built an embankment of brush and rock which was carried to an elevation of 856 and on which a track was laid. This dike was built by the company's own forces in the winter of 1884 ' 85

The dike was subsequently extended 700 feet down stream to Pier I by a permeable screen made by driving a series of piles through a woven mattress 50 feet wide and subsequently putting another matress on the outide of the piles the lower edree resting on the first mattress and the upper edges wired to the piles. The effect of this screen was to allow the river permeate throuch the screen so that there would be a current on both sides of the screen and thus entirely prevent the formation of an eddy at the lower end of the dike.

The dike worked perfectly, and during the high water season of 1885 deposit was formed below it nearly as high as the top of the dike. A good prowth of willows now covers the ground between the dike and the bridge line.
There was used in the construction of the dike 357 I cords of brush, 8712 tons of riprap stone. 2273 teet of piles and 4223 lbs . of wire

The only protection work done on the west side was to riprap the shore in the neighborhood of Pier IV; for this 2530 tons of stone were used.

The item of freisht includes freight only over the C. B. \& Q System In comparino the cost of this bridge with that of other structures the cost without freight forms the most correct basis for comparison This table may be condensed into the following:

		Frembicharges.	Cosi fackuthe
Subaructure	\$377.411.13	\$27,870 91	\$7765.28.03
Superstuclure	159.113.84	6.366 .33	196.480006
Total Brilge Proper	577,52.96	34.737.13	$5^{51.7} \mathbf{7}^{6.0 .09}$
Protection Works	16.543-44	4.485 .48	11.578.98
Approaches	335,995.16	17.756.4	354.771.50
Service Tracks, Tools and Buildings	30,412.09	2,345.98	32,88, 47
Enginccing and Expenss	49.531.67	-	49.5354
Toial Cosil	940, $0,020.32$	${ }_{7} 99.504 \times 4$	\$1,090.34 ${ }^{\text {\% }} 75$

This is the total cost of the Rulo bridge and approaches as built uri der my charge; the following additional items have, however, been charged to the cost of the bridge:

> Land Damages
> Watching
> Preliminary Expenses
> Rulo Yard

Which makes the total cost $\$ 1,072,84 \mathrm{I}, 6 \mathrm{o}$. Against this the construction cost is really entitled to a considerable credit for the amount of abandoned line on each side of the river. The item of watcling covers the 25 month from October I, 1887 to November 1, 1889, during which whole period the bridge was in use.

APPENDIX A

LIST OF ENGINEERS. CONTRACTORS AND EMPLOYEES.

ENGINERRS AND COMPANY'S Employees

tume of sravicr.

contractors
Drake \& Stratton Masoniy
lames Doig, supt. at Rulo.
Edgemoor Ifon Co.

Superstrucure.
Prios, Sub-Contractors for Erection
S. Dwight Eaton
J. S. Wattlcs

Grading Approaches.
East Approach Trestle

APPENDIX B

ACT OF JUNE 18, 1884 . AUTHORIZING CONSTRUCTION OF RULO BRIDGE AND CONTRACT WITH WAR DEPARTMENT.

An act to a anthorize the construction of a bridge across the Mussour Ruver at some accesstbe point within ten mikes north and ten miles ssurt of the town of Rulo, in the cocrity of Riclarassos, in the Siate of Nebrask
 of Autrartect in Congrrss Assbatelev:

 veniencc and welfrar and die necessities of busines and camnuere, and also to construct zectessory works to secure the best practicatle channel. way for naviggtion and comfine the flow of the water to a permancon channel at such point, and also to thay on and over seid britge a nail way track for the nore perfcet conncc
toon of nyy railroads that are or shall be constructed to suid nver ator opposite siid point and said corpor
 reassnabic coll therefora as may be approved from time to timit by the Secriciry of War.
Src. 2. That ssid brides shall be constructed and built wethout nitefference wth the sccurity and con-
 Serctetry of war, for his cexnnination and approverl, a design and prawings of the bridse, and a a nupp of the locaton, grving, for the space of ore mile above and one mile below the proposed location, the topography of the banks of the nive, the shore lines at high and iow water, the drection and strength of the curgents of all steges and the suundinss accuratelely shawing the bed of the steam, the location of any other bridge of bridges, and shanl furnish suech olher information as may be reqrired fox a full and satsfactory yuddrstand ing of the subiect and until the said plan and locanon of the bridge are approved by the Sereabry of Way bridge stall not be built:
three or more ehannel spars, and shall not be of less llcration in any case than fifty feet above extreny hagh water mark, as understood at the pant of location, to the bottom chord of the tridge, nor stall the
 han three hondred foet in length:
 the smin stall be constructed asa pivot bndge, with a draw over the main channcl of the river at an aceer Silc a and navigable pontt and with spans of not less than one hundred and ssxty fect in length in the elem thall not be less than tixree h. above hygh nater marik
 lights or other signals on shid bondge as the L.yht--House Bard shall preseribe
Proviosp MISS, That all ratiway companies dessring to use said britage shall have and be entitle

by the Seceretary of War, upon hearing the allegations and proffs of the partics, in cese they shall not agree. $_{\text {sec. 3. That the Secretary of War is hercby authorixd and directed, uppan receiving stch plan and }}$ hap and otier informintion, and upon beiry satsisied that a bridgc buit on such plan and with snch acces. dhat he approves the smeme, and uppon recervmg suck noofifiation tite said compmany may proceced to an erecctlon f said fridges conformangs strectly to the approved plan and location; and should any change he made in the

 he case may be brought in the circcuit court of the Unted States of the Slate of Nebrasha or Stane of lom, in which any pprrion of said obstructinn or bridge may be located.
nd constructerd nnder this act and acCording to the terms and limimititions thecrof, shall be lawfull structures: and said bridge shall bereecegnuzed and Mown asa a post-route, wpon wixh also no highee clarge shal be madd for the transmisuon over the same of
 ngbss and privilteses of oftere pest troutss in the United Statess and Congress reserves the r ight at any time to Egulate by approprite legisistion the charges for feeght and pasengeers ouer read bridge.
SkC. 5. That the Unted States shall have the right of way for such poscal-eelegraph lines across ssid bidece as the Covernment may construct or control.
Sk. . . That Congreses shall have power 3 ant
or remove all material and substantial bostructions st the navyution of sad river by the construction of sand prige and is accessmy works and the expense of altering suid bridge of emoving such obistructions shall the expense of the onners oft or persms con
Reccived by the Presicent, June 6,884 .

contract.
Wherens, By an Act of Congress of June 18,1888 ,-23 Stats. 45 - enitild, "An Ast to nutborize the

 raska, nnd to construct accerssmy works to secure the best praciciable cirannel way for navigation, and also o lay on and ower sund lididge a ralway track, to construct and maintan mays for wagons, cariages and the Scerterary of War, and
 struuted and built without interference with the secruity and convenience of navigation of said rixer beyona
 approval, a deeigng and drawings of the tridgs, and a map of the location, giving, for the sprace of one mine above and one mile below he propesed loction, the topugtrphy of the banks of the river, the shore lines 3 high and low water, the direction and strength of the currents at all stages, and the sonadings, accurately
shomng the bed of the strame, the location of any otier bridgc or bridges, and shall furvish such other in-
 and location of the bridge are apporved by the Screctary of War, the bridtes shall not be buils, and WHRR RAs, The Seceetary of War is antborice and directed by seid Act of Congress, upon receiving
snch plan and map and othcr information, and upon being satisfied that a bridge buill on such plan and with
 company that he approves the same, and
Whirkess, The Athison and Nebraske Rail way Company in acoordance with the provisons of the Act
 Whereas, The Chif of Engineers, United Sates Anny, lias reproted, "That from the best aud most relialle information atuinamble by his offece, contained in the paperts herewith, it is beiie ece that the pana of the bridge at Rulu are substanually in acordance with dec cquiremens of the Acc of Congress at dorcend Plan and location of the britgese sulbnitted by the siid Atchison and Nebbaska Railway :Company, as aforch
 approve the same.
and that this approval is given upon the experes condidions followine
 ${ }^{25}$ aforeanid.
2. That shonid any change be made in the plan of ssid bridge during the progress of construction sich change slall be subject to the approval of the Scaxtary of War.

Witress my hand this 25 th dey of February, 188%
$\mathrm{W}_{\mathrm{M}, \mathrm{C}} \mathrm{C}$ Expicort, Secreaty of $\mathrm{W}_{3 \text { I }}$
This instumenti sa also evecuted by the Acchison and Nebraska Railway Company, by its President G. W. Holdrege, therect lawtully authontred this teth day of February, r88\%, in
of the provsion of the said Act of Congres, and the condtions therein imposed.
the atchison and nebraska railway co,

 vill contion approsinately s50 and Soo cubic yyrds of mesonry. Piers 11 and 111 vill be in the river, and will contrinappproximatatly 1,3oc cubic yards each. The mas sonyyef Piers 1 and $1 V$ will be started on finisced lations put in by the plenum preunatue process, the botiom of the mosesny tinishing ablout twelve feet bele and progess.
The misesmy will be firstclase reek face work, hatd in regular courrees. The face stoncs, including enping tackirg may be of any good suund iimestore
The piers shall coniorm in all respects to the plans furrusthed by the Enginece.
No course silll be lese than sixteen inches thick, and nn couse shaill be thicker than the counse bellow

 aganst a face stone in the opposite side uf the cousse, or by bonding with a piece of txacling not leas thar Hirce fect suarece which shall hond with a face slone on the opposte sile, In all cases the interioc bondin: hall be further secured by placing in the course above, a stone of the full thickness of the course, and at ten cut water, the stones of whici slall be ss arranged that the faee stores arce supported from behind by lavye ieces of backings.
All juint stall be pitched to a true linc, and dresed to one quarter of an noch foe at lenst twelve inches Fom the fice. Beds, both upper and lower, shall be pitched to a tree line, and dreseded to one quarter of an inc.. Jants staia
sizo of the stone.
The pointed ip stream sterlings of Piers II and lu, from the foeting curuses to the smal coping at the fifset, shall have a fre paonted face, with no proection execeding one-half inci from the pitech line of th coping, and on the edge of the panted starrings. The chtire coping orer the whate pier, and the small

thall have a rough quiryy-fine, wrth no projection exceceding thrce inches from the pitch line of the joint
the top of the poonted saralings, stanll be doweled into the course below with reand dowels of one and one ighth incin rom, extending swi inches intoeanh course. The dowcls shall be from cight to twelve inches hack
from the face and sixx inches on cach sadc of estary joint, the stones of the upper cousse shall be crillod through before setting ater which the drill-hole shall be tsterded six inches into the lower course a a snall quannty of mortar shall then be putt into each hole, the dowel droppcd in and driven home, and the hole filled with mox tar and rammed. The threc courses below the copiny stall have the joints bound with eramps of z/k The stanes in the coppng uuder the bcurings of the trusses thall 1 be zecorsiing to speeii
furrishcd. They stmul have grod beds for therl entice size, and stall hiwe afull bearing on latree stoncs vith dressed bods st the belting eurrse blow the coping.

Wess as the fice stores, but two thicknazss of backing may lic used fix one course of face stones, provicicd ni
All stoness shan tre se sound iness thick.
Enginer. All lumesorone shanl be laid on naturual beds.
Enginecr. All lumestone shall be laid on natural beds.
Al stones slall be laic in full mortaut beds. They
a bearing with a meal. No spalls will be alloweded, except in selowera on the bed cf mortar and brought to mortar joints will nor be inssted on, but the jants shall be properly crleaned on the fiee and pointed in mild Weather, the piaiting to be driven in with a cualk ing roi
toins varying from one to thrice parts of sand to one of cement, as matsy be dreated wis iner, in propor.
 cutions to prevent the marter frum freving as stall he satisfactory to the Enginieer. structurc.
The Rairroad Compipany will furrists free transportation from Kansas City or Council Bluffe, of any

 the assumption that the stonc is to be eut at the quarry, and if the contractors prefers to eut at the bridec ste,
 Stonc transported and the finished welght, as
The Ralload Company will furroish cement foc mot tar, which must be handled from the cars, of store.
bouses by the Contaractx, who will bch held responible for any las or waste.
and will be rusponsibile fox all drmanges which may occur from the comduct of the werk embraced in his

RECORD OF SINKING CAISSONS. PIER I

	a moc					$\begin{aligned} & \text { Bimb } \\ & \text { Bain } \\ & \text { Hours } \end{aligned}$							Waner		Wенентs.										All Paxsseram.						รммา
	x. E.	y. w.	\%. E .	8. w.	mase.		e.	x. v.	E.	s. w.					Timber,	Iron, co	Conamen. x				Lock			Toral.							
																			$\begin{gathered} \text { rons. } \\ \hdashline \\ \hline= \\ \hdashline 1 \\ \frac{3}{3} \\ 3 \\ 4 \\ 6 \end{gathered}$		$\begin{array}{r} \text { Tone. } \\ \hline 6 \\ 6 \\ 6 \\ \hline \\ \hline \\ 8 \\ 8 \\ 9 \\ 9 \\ 9 \\ 9 \end{array}$	Tons. च = = = =	$\begin{aligned} & \text { rons } \\ & \hline \end{aligned}$			4 Lis. $\overline{1.88}$ 2.95 $\underset{\substack{9.48 \\ 11.04 \\ 11.10}}{\substack{10.4 \\ \hline}}$					Began Concretung at 8 a. m. Surted are pumps at 8:is a, m. Started Water Pumps at 8 a. m. Began building crib. Mlaterial passed through, river sand,
																			$\begin{aligned} & 6 \\ & 6 \\ & \frac{6}{7} \\ & \frac{1}{8} \\ & 18 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$		9 10 10 12 12 12 12 12 12 12 12 12 13 13 13 13 15 15 14 14 20 20 20 20 20 20 20 20 20 20 20						1089 1259 1418 I 585 1508 1053 1718 1710 1707 1779 1759 1759 1740 1732 1759 1759 1779 1865 1937 3034 2136 2136 2286 23.43 2343 2432 2366 2411 2711 2501 2181 2181 2487 2559 2537 2510 2540 2540 253				Reached clay. Blew prebsure off to g Ibs, ill setting. Besan excavation for test pit. Referred to bottom of ${ }^{14} \mathrm{~T}$, est PIt^{H} colunims $\mathrm{H}=65.7 \mathrm{ft}, \mathrm{L}=29.72 \mathrm{Jbs}, \mathrm{MI}=28_{31}$ tonss, $\mathrm{N}=1912$ tons, $\mathrm{P}=407 \mathrm{lbs}$,
$\begin{gathered} \text { April. } \\ \text { 2 } \\ 3 \\ \frac{4}{4} \\ 8 \\ 6 \\ 7 \\ 9 \\ 9 \end{gathered}$																$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$			13 13		$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & \hline= \\ & \hline= \end{aligned}$			$\begin{aligned} & 25 \\ & 34 \\ & 36 \\ & 36 \\ & 26 \\ & 25 \\ & 25 \\ & 25 \\ & 35 \\ & 36 \end{aligned}$						$\mathrm{H}=75 \cdot 4 \mathrm{ft}, \mathrm{L}=32.62 \mathrm{lbs}, \mathrm{M}=3107$ tons. $\mathrm{N}=\mathrm{I} 636$ tons, $\mathrm{P}=348 \mathrm{llss}$. 行 Began serling Caisson at $94 \mathrm{~m}^{\mathrm{p}} \mathrm{p} . \mathrm{m}$. Finished fillmg working clamber at 5 A , su. Took arr off at $2: 15 \mathrm{p}, \mathrm{m}$.

RECORD OF SINKING CAISSONS. PIER II.

APPENDIX D.- Continued.

RECORD OF SINKING CAISSONS. PIER III

PIER III.-Continued

RECORD OF SINKING CAISSONS. PIER IV

TIME, COST AND MATERIALS USED IN FOUNDATIONS. PIER I.

TIME, COST AND MATERIALS USED IN FOUNDATIONS. PIER II

pier ii.-Continued.

TIME, COST AND MATERIALS USED IN FOUNDATIONS. PIER III.

\qquad

Took off air at $7: 20 \mathrm{a} . \mathrm{m}$. .

[^0]15955.93

eneral description
The superstructure will consist of three main through spans and sx deck spans thriccof which wll be Each through spann will be 3 3 5 feet long between centers of end pis, divided into fiften pancls of 5 feet ench. The truses mill be 5 o teet deep and phaced 32 feet apat sctween centers. The thip chard

 (wrought iron and 21,0xa pounds of cest 1
Earh deck span will he 125 feet long between conters of end pins, divived nnto five pankels oif 25 iced
 We bridec, makngn total length of iron wark in each yroup of threce lack spans of \$25 leet. Thac piln Wiles, bacering plates and eye bars, caxcptang counters, will be of stcel; all athee parts will be of wrough

 unds of cast ion
The toraz estimated weitht of the enire stacture is appoumacly toro,000 pernd

PLAN:

Fill detul plans, showing all dimconsunh, will be fitristed by the engincir. The werkk stedil the

 plans.
materials.
All matecials shall be stibect to inspection al all times during their manifacturc, atd the eng neer dhis inspectors shall be allowed fruc accecss to any of the works in which any pot tun of the manaterralis

 loyed, it being minderstood thay the furrisheed prodreet is to be ore in which the phosphorus does no verage more than 8 -coo of one per cunt,, and nec cr cxeceds $1-1$ of nec per ce
A sample lar \% \% of an inch in diameter shanl be rolled from evern melt, the method of obtean ning the is smpple lar sthall be as nearly as practicable the eame as on the frisished prodinet. The liluratiory tois

The lahoratory test if High Stecl made on the sanyle bar shill shon an elastit limit of not less than

 The Inlurataroy tests of Low Steel made on the sanple bun shanl slow an elastic lin init of not less than

The wfles ned on the vutske if the canc.
 Facilitics for testing samnlle bars shall be fumished by the contractecr at a point convencent to the steel Wroks, nad the tests stall he maide at the evycunx of the contractor and under the direction of the kngincer. show reulls substantinly conformung to thece shiwn by the sample tesis of the smene med
All theared edgrss or punched holcs in stcel work sthall bo sulbsequenty pianed of drilled out, so that pining.
Mrought Irom.-The iron nsed in tansion menters shall be dorble refinad fligh testl) ion; muck bars may be wad nt the ectite- of the ples, butt shall not constute merc than one thitr af the total pile. Small

 Coss 25 per cent. at the peint of fractrue. The fiacture shall be of nififxall fibuus chay ceter, frec from crssallinin appearan
 ion nesd inshapcs, plat csand other missellanecous furms nss iirceter hy the Finginecr, these sminples will show

Cast iren shall be of the best tulallty of touyth. gley ron.

RIVETED WORK.
All plates, anglcs and channels sinill be carefuly stranghtened before they ale laid onf; the rivet holes shall be carefully spaced in trily strig bht lincs the rrect heads shall bc of hconispherical pattern and the work shall be finshed in a neat and workman fike manner. Sur faces in contact stall be
painted beffrec they arc put together. The chimensions green for nvelto on the plans are the dumeters pain ted beffret they nre put
of the rivete befare driving.
pable of excrting a yelding pressrre and holding on wo the rives when the npsetting 15 completed.
Stefl.-Thc several parts of each steel member shall be assembled and the holes shnll be driled, the
 punched wth holes not exaceding 4-5 the diannetcr of the finishecd hole, and this puncting shall bc so ac-
 wichecer possible the rivets shall be diven by power. All bearng suffices shall be truly faced. The chord pieces shall be fited together in the shop in lcength of at least five pencls and marked; when so fited there shall be mo percepettble wind in the length hid out. The pla-koless shaill be bored truly so as to be at Tact distances, parasice whit onc another, and at right angles to tic anis of the member
Wrought tron-All wrought--won shall be punched decurtaleys whth loles $\%$ of an inch harger that
 with the pases and bobters and the stringers with the floor-beans, and. in gencral, the holes for all rivet Which must bo driven alter erection, shall be accurately dr liked to an iren templet. The holces fir the

forged work.
The heads of the steel cye-tars shall be forned by upect ting and forging inta shapc by such praxess as Gav ba accepted by the Enginecr. No we dids will be allowed. Atter the working is sumpleted, the bars slall b annealed by heating them tox unforpan durk red heat throughout thecir enture length and allawing tume
 sized lars.
The heads and the crlarged ends for screvs in haterals, subsencers and counters stall be formed b Wecting or bv an upecting and welding proces acecetable to the crigineer. Welds in the lody of the ber
tests of full sized bars,

 nid pposible broken; if broken, the fracture shail seceri in the body of the bar and stall show a u uniform an
The contractor will be required to furmish facilites for testing the full-dized bars vithin a reasonabble d ance of his works. Should the contractor be unable to furnish such faccilites, he shall be reguired to fur ris.
bars at zo per rent. larger scetoon than those called for, without charye to the increased welyht - at zo per rent. larger sce toon than thase called for, wethout chankg tor the increased wayht
slected till dill tho cyc-bars are manulfactured. The teets shall be made from time to ume az the bars aro Flected. When three bars, have seen tested, the buss manuffactred up to the tinke of the selection of thes

 Sted. Should the contractor on the fist atienpt fail to unake burs connug up to the required spectica he contracter whiliout charge for the increased weight.

machine work.

The bearng surfacts in the top chord thall be truly facca. The cnds of the stringers and of the tloon

All plos shaull be accurately trneed wa gavge, and shall be of full she tivoughouth pin holes shall be
 four for each suze of pin.
All serrws sivil have a trunctited V thrcad, United States standard simes.
miscellaneous.
All workmanship and material, whether particulurly specifice or not, must be of thic best kind now in use
 ground for resection fough and ireegulurly finshed work will not be accepted.

TERMS.

 day of the fillowing nometh, accerring to these estimats, deducting from the anount of the sane ten per cent. as security, to be held until the completon of the entirc contract. Nes not firm a part of the permanent structurc. All expense of testing shall be bane by the contractar.

TIME
The deck spans and towers shall be completeted and shipped not hater than Januarys st, 1887 . The three
 The rall rond company may exact a penalty not exveeding $\$ 150$ per day for falure to complete the wat mthint these spectied times.
proposals.
 Thic proces should be hy the pound at exparate retes :or steal, wrought iron and cast tron. The fricesshull

 polts. The contractas will be required to furnish dill files wolk and mols of overy description, and the plans of such fise work shall be albject to the approaz of the eagneer.

Chief Erginerer Rulo Bridpe.
S. MORISON

APPENDIX G.

TESTS OF STEEL EYE BARS

tests on full-sized eye-bars.												tests on sample bars from same melts.								
Disuxhioxs,_-zoers,						Resamis or Mimumitaz Trast.					Prase of	Draversmes.			${ }^{\text {Enengion }}$				Yeit	
Onvi				Aftur Tetinu.			Extension													
Nominal.		strual.																		
with. Thicke	$\underbrace{\text { a }}_{\substack{\text { Lengit } \\ \text { e.loc }}}$	what.	Thickn	Wridh.	nes															
$7 \quad 3$	300.05	6.57	0.76	-	-	-	$2 \% 4$	-	347\%	50450	Head	. 739	. 545	45.6	22.80	47740	74^{840}	ogo	8485	
71	${ }_{30003}$	6.97	1.0r	5.51	0.74	2.08	$2{ }^{2} 4$	13.77	335350	t_{7230}	Eody,	750	. 535	49.1	25.30	44140	${ }^{7333}$	cos	8847	
1/1/2	30.03	6.97	1.58	5.37	0.87	55.40	264	${ }^{14.75}$	31570	${ }^{65252}$	"	. 750	${ }_{530}$	50.1	26.75	475^{30}	75140	. 051	${ }_{84}{ }^{5}$	
$7{ }^{13}$	300.03	6.97	1.76 ${ }^{6}$	-	-		364		30925	50020	Head	843	. 475	59.4	26.30	45270	71040	. 886	${ }^{83}+5$	
7	${ }^{300.03}$	6.97	ı.or	5.46	0.64	${ }_{50} 3^{36}$	${ }^{264}$	13.67	35330	67800	Body	.750	. 335	4s, ${ }^{\text {a }}$	25.30	41440	73330	900	8847	
7 15/5	300.03	6.97	1.50	6.60	1.39	12.25	264	9.0r	${ }^{35120}$	6710	,	.739	\%o	534	24.70	47570	74610	. 068	${ }^{8} 35^{2}$	
7 13\%	4.18	6.98	1.62	5.23	0.98	54.67	${ }^{36} 6$	12.11	36070	57100	"	70	545	45.8	33.00	48040	75340	.0\%6	${ }^{8339}$	
7 1\%	424.	\%	. 61	5.57	1.23	39.70	396	11.43	33120	${ }^{63} 310$	"	.741	486	57.0	24,60	43546	74210	.075	${ }^{833}$	
$7 \mathrm{~L} / 4$	424.09	6.48	1.26	5.85	1.02	33.15	356	11.24	$3^{279} 3^{\circ}$	64240	"	.74)	550	45.1	25,00	45170	77^{500}	. 043	8414	
5 3	427.97	5.or	0.76	4.00	0.54	43.27	$37{ }^{6}$	8.65	3	61310	"	. 748	. 510	53.5	24.37	48240	78690	.062	8367	
$5{ }^{3}$	422.73	5.00	0.77	3.70	0.48	53.87	${ }^{31} 10$	9.78	4365	${ }_{693}{ }^{2} 5$	"	.746	510	53.3	24,80	44350	$77^{\text {\% }}$.076	8223	
7 6	$3^{300.03}$	7.00	1.75	5.20	${ }^{1.23}$	47.63	$36+$	${ }^{15} 37$	33300	${ }^{637} 70$	"	.758	56	+5.4	24.1	455×0	72680	-	${ }_{23} 3$	
7	299,61	6.97	. 78	5.41	0.5,3	+7.51	$=64$	${ }^{13} \cdot 3$ 3	4040	${ }^{67330}$		755	535	49.15	23.30	46580	743%	. 086	5946	

\square

$$
\begin{aligned}
& \text { С. B. 民 Q. F. H } \\
& \text { RULD 回距回国 } \\
& \text { CENERAL ELEVVATION, PLAN, PRUFILE Ex ALICNMENT }
\end{aligned}
$$

ELEVAIIDN
Farculal

ATCHISDN LUNNEGTIGN PRGFILE Ex ALIGNMENT

PRDFILE
SHDWINE

\square

REDCRD पF WATER STACE DF THE MISSDURI RVER AT RLLE NEBRASKA.

DETAILS OF 375-0"SFAN
Panel Point Lo.
End Elevation

GENERAL ELEVATION AND PLAN
U

\square

[^0]: Other expenese charged to stinkitng

